
7 D-166 291 R MULTIPLE GAUSSIAN HAVE 
PACKET THEORY OF H2 vi1

DIFFRACTION AND ROTATIONAL E..(U) CALIFORNIA UNIV SANTA
BABR QUANTUN INST B JACKSON ET AL. FEB 86 TR-i

UNCLASSIFIED SRSSBI4-81-K-1598 F/0 7/4 N

EEMEEEh



LI.

II __________

1.2.2

MIR.)P REiIN ET HR



unclassit jed/unlimitei
SECURITY CLASSIFICATION OF THIS PAGE (when Data Entered)

DOCUMENTATIO PAGE "READ INSTRUCTIONS
REPORT BEFORE COMPLETING FORM

I. REPORT NUMBER 12. GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT 8 PERIOD COVERED

A MULTIPLE GAUSSIAN WAVE PACKET THEORY OF H2  Annual Technical Report '

DIFFRACTION AND ROTATIONAL EXCITATION BY s PERFORMINGORG. REPORT NUMBER

COLLISION WITH SOLID SURFACES

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(e)

Bret Jackson and Horia Metiu N00014-r1-K-0598

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

University of California AREA WORKUNITNUMBERS
Quantum Institute NR 056-766/4-21-81 (472)
Santa Barbara, CA 93106

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research February 1986
Department of the Navy, Code: 612A: DKB 13. NUMBER OF PAGES
Arlington, VA 22217 38

14. MONITORING AGENCY NAME & ADDRESS(If dilferent from Controlling Office) 1S. SECURITY CLASS. (of thie report)

0') Office of Naval Research Detachment Pasadena unclassified/unlimited •
N 1030 East Green Street _ _ _ _ _ _ _ _

PCa. DECL ASSI FI CATION/ DOWNGRADING
Pasadena, CA 91105I SCHEDULE

(.0 1. DISTRIUTION STATEMENT (of this Report)~~~~This document has been approved .'-"-
fOr public relea.se and sale; its .[ [[Sdistribution is unhinhited. I

II

17. DISTRIBUTION STATEMENT (of the abstract entered I, Block 20, If different from Report)

This document has been approved for public release and sale; its distribution
is unlimited.

Submitted: J. Chem, Phys. l A 0 'CJ :'/,"::

I9. KEYWORDS (Continue on reverseie. ,d It necee , and Identify by block nu..ber)

solid surfaces' surface scattering,' .

JI

20. ABSTRACT (qontinue an reveree ede It necesery and Identify by block number)
LJ We combine'7Gaussian wave packets and the coupled channel method, to develop a '

theory of H2 diffraction and rotational excitation by collision with surfaces.
This improves our previous work on H" diffraction since it eliminates the mean
trajectory approximation; it also extends Heller's work to problems in which

- the dynamics require the creation of new packets which must be coupled to each
P. other as they are propagated through the interaction region. The approxima-

tions involved in the above Gaussian wave packet approach can be removed by
using extending method proposed by Flect, Morris and Felt, which propagates

DD , J N73 1473 EDITION OF I NoV 65 IS OBSOLETE unclassified/unlimited

S/N 0102.LF-014-6601 _ _._-_._..'.
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

'8" " " " " "i



unclassified/unlimited I*

StCUMITY CLASSIFICATION OF THIS PAGE(*7hen Date fitt.,ed)

* 1,
A-the Gaussian wave function exactly and efficiently. .

unlassified/unlimited

SECURITY CLASSIFICATION OF THIS PAG~rWhen Data Entered)

.*1



OFFICE OF NAVAL RESEARCH

* Contract N00014-81-K-0598

Task No. NR 056-766/4-21-81 (472)

Technical Report No. 1

* A MULTIPLE GAUSSIAN4 WAVE PACKET THEORY OF H
DIFFRACTION AND ROTATIONAL~ EXCITATION BY COLISION
WITH SOLID SURFACES

by

Bret Jackson and Horia Metiu

Chem. Phys., submitted (1985) justification

Distributi~on/______

*University of California Aalado
Department of Chemistry Dist Special
Santa Barbara, CA 93106

* Reproduction in whole or in part is permitted for
* any purpose of the United States Government.

This document has been approved for public release
and sale; its distribution is unlimited.



! . . ,.,

A MULTIPLE GAUSSIAN WAVE PACKET THEORY OF H DIFFRACTION ANDROTATIONAL EXCITATION BY COLLISION WITH SOLID SURFACES

Bret Jackson* and Horia Metiu

Department of Chemistry
University of California
Santa Barbara, California 93106

-S.

* Present Address
Department of Chemistry
University of Massachusetts
Amherst, Massachusetts 01003

. ..

.. 5

"S4.

" '

VF



1 2p

ABSTRACT
I,.

We combine Gaussian wave packets and the coupled channel

method to develop a theory of H2 diffraction and rotational

excitation by collision with surfaces. This improves our previous

work on" H diffraction since It eliminates the mean trajectory
2

approximation; It also extends Heller's work to problems in which

the dynamics require the creation of new packets which must be

coupled to each other as they are propagated through the

interaction region. The approximations involved in the above

Gaussian wave packet approach can be removed by using extending a

method proposed by Fleck, Morris and Feit, which propagates the

' Gaussian wave function exactly and efficiently.
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* I. INTRODUCTION sraesatrn xei

The analysis of various H2 surface scattering exper

ments 1 - 1 5 requires the use of quantum mechanics in describing the

rotational motion and the translation of the center of mass.

"Exact" coupled channel calculations are possible only for low -.

incident kinetic energy.* 6 - 1  However, even when feasible, such

calculations are tedious and perhaps insufficiently descriptive of

the underlying physical processes. As a result much work has been

done to develop simpler and hopefully more illuminating19-34 i -
approximate procedures. 1 ---

In this paper we present an extension of our previous
.4 35work in which we used a Gaussian wave packet (GWP) mean

trajectory approximation (MTA) method to calculate the diffraction

and the rotational excitation of H2 colliding with a solid

surface. The GWP-MTA theory uses a wave function of the form

N n
= Z G (;t) Z c 'llt) Y1(e,4)exp-iet/h)},

where is the center of mass position and e and are the polar

and azymuthal angles describing the orientation of the molecular

axes in the coordinate system shown in Fig. 1. The functions

YI(e,*) are spherical harmonics labelled by the binary index i

(l,m 1 ), and G (1,t) are Gaussian wave packets. The experimental

conditions are such that the vibrational energy of H2 exceeds all

other energies in the system, so we can consider H2 to be a rigid

rotor.

Since we are interested in diffraction we must ensure that

the initial state of the center of mass is a plane wave. This is
35-.39

achieved 35 3 9 by placing the packets G a=l, ..-. M on a M point

square grid which covers the surface unit cell, and by choosing

the parameters in each G so that for - within the unit cell, Z "

G c() coincides with the incident plane wave. The translational

symmetry of the surface allows us to construct the result of

- *....ma --...... ................. ........... -....... ......-.
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scattering by the whole surface, from the results of scattering

the packets G by an unit cell. 3 5 3 9

To explain some of the Improvements contained in GWP-MTA we

compare it with the customary classical MTA40 - 50 (denoted CMTA)

which has been applied fairly successfully to surface science

problems.28 ,29 ,45  When applied to H2 scattering CMTA replaces in

the Hamiltonian the quantum variable with the "classical"

trajectory I(t), and uses the wave function (e,*) = Z cI(t)

Yi(e,)exp{-Ie t/h}. The classical trajectory t(t) is obtained by

solving Newton's equation with the mean potential Z Z cM(t)cM(t)

<YiJV(lt))1 i > where V("(t)) is the surface-molecule interaction

energy. By using a classical trajectory MTA eliminates all

quantum effects from the motion of the center of mass, except for

those contained in the computation of the mean force. The GWP-MTA

theory propagates a Gaussian wave packet on the same potential'- ~35,50 ' '"
energy as CMTA. The use of a wave packet provides a fully

quantum mechanical description (albeit a simplified one) of the

center of mass motion. The resulting theory describes well such a

dramatic quantum effect as diffraction and also gives a good

description of the rotational excitation probabilities.3 5

Furthermore, GWP-MTA is computationally cheaper than its classical

counterpart since the number of GWP's needed to describe the

quantum scattering process is substantially smaller than the

number of classical trajectories required by CMTA. This can

generate substantial savings in computer time since the expense

per GWP is roughly twice the expense needed to propagate a

classical trajectory. This can be understood metaphorically, by

thinking of each packet as a bundle of classical trajectories,

S which are generated at once by propagating one packet.

Unfortunately GWP-MTA shares with CMTA a shortcoming whose

removal is the subject of the present paper. To understand both

the origin of this shortcoming as well as its removal by the

method proposed here it is useful to compare the GWP-MTA wave

function (II.1) with its proposed replacement, which is

r -2:
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M n
t) X E G (A;t) Yi(e,*)exp{-ieIt/h}. (1.2)

The GWP-MTA wave function describes the center of mass

motion with one Gaussian per grid point. Superficially this is in

agreement with out intuitive belief that a packet represents a

localized "corpuscule" (as opposed to a wave) and therefore we

must have one trajectory per corpuscule. It is however Incorrect .

to apply this "Newtonian" notion to a system that has discrete

internal states (i.e. rotations) which can be excited during

collision. This makes the classical motion of the center of mass

rather non-Newtonian, since the quantum excitation of the internal

motion affects the center of mass motion (at least through the

conservation laws). Thus the excitation of an internal state

requires the appearance of a new center of mass trajectory whose

translational energy is equal to the incident one minus the energy

of the Internal excitation. Therefore, a correct description of I
center of mass motion requires one trajectory for each final

rotational state. Within the GWP approach this can be achieved by

using the wave function (1.2) which has (at each grid point) one

packet for each rotational state.

It is now useful to contrast the behavior of the packets in

these two theories. The unique packet used in GWP-MTA moves on a

mean, rotationally averaged potential surface. A time of flight

(TOP) measurement applied to this theory gives one peak in the 57
momentum distribution whose position is determined by the fact

" that the kinetic energy lost by the center of mass motion equals

the total energy taken up by all the rotations; the same TOF

measurement on a system described by the multiple GWP theory

(MGWP) leads to one peak for each rotational state. In MGWP the
post-collision rotational distribution is imprinted in the TOF

spectra and with sufficient resolution one could measure the

rotational energies by doing TOF measurements. Another way of

pointing out differences between the two methods Is to examine the

results predicted for rotationally selected final state

-. ... P?.



'aX7VF, . X..

4

51 1.

measurements. GWP-MTA gives the same diffraction spectrum for

each rotational state, while MGWP gives different diffraction

patterns for each final rotational state. Furthermore for a

rotationally selected, angle resolved, TOF measurement GWP-MTA

gives the same results for each state Yi, while MGWP predicts

different results for different Y

We emphasize that while the conceptual and qualitative

Improvements brought about by MGWP method are interesting and

necessary, one should not view the use of GWP-MTA with exagerated

alarm. The measurements required to discriminate between the two

methods are possible but very tedious. Less ambitious'(but still

difficult) experimental work, such as a measurement of the

rotational distribution with a modest angular resolution and

without TOF, is likely to be well described by GWP-MTA, since the

method of measurement performs experimentally the kind of

averaging that GWP-MTA does theoretically. Diffraction

measurements with modest angular resolution and no anlysis of the

- rotational state are also well described by GWP-MTA except for

those situations when the angular resolution is sufficient to

resolve the diffraction peaks due to molecules that are
rotationally excited. 2,6 Such peaks are averaged by the MTA

theory together with the rotationally elastic parent peak and will

be absent in the predictions of the theory.
52-70Within the existing GWP methodology the development of

the MGWP scheme requires the solution of several technical F
problems. The customary propagation scheme assumes that the

number of packets is conserved in time, while in the present

theory we must start with one packet and emerge with as many

packets as many open rotational channels. Thus we must find a IT
method for generating new packets as the incident packet enters

the collision zone.

Furthermore, the existing applications of the GWP method to
diffraction 3 6 3 9 has used what we call the simplest Heller method

(SM), which assumes that the packets can be propagated

independently. This assumption cannot be made in the present

U r%

.. ,".
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problem for the Gaussians Ga, i=1, .... m because the rotational -..

populations are established exclusively through the coupling

between the packets having the same a but different i-s. Neglect _

of this coupling (as in SHM) would suppress rotational excitation r
from the theory.

The main contribution of the present paper to the GWP

technology is the development of a propagation scheme in which

Gaussians are created in the process of propagation as needed, and

evolve by interacting with each other.

The difficulties encountered by a classical or semi-

classical propagation scheme applied to a subset of degrees of

freedom which are coupled to a strongly quantum subset, are well

known71-79 and much labor and ingenuity has been devoted to their

solution. The present MGWP approach is a new procedure to attack

this old problem. Since the space does not permit a detailed

comparison between the present and the earlier work, we
confine ourselves to listing those features that make us hope that

the method developed here will be useful. First, the MGWP does not

require root searching, classical calculations with double ended

boundary conditions, or self-consistent solutions of integro-

differential trajectory equations, it is not confined to one

dimension, and has no difficulties with the turning points.

Second, the GWP equations of motion are almost as simple and

sometimes less laborious than the classical ones. The GWP

scheme blends easily and naturally with classical mechanics so

that quantum scattering calculations from a classically moving
39lattice are possible. Finally the method lends itself to simple

classical like, intuitive interpretation of dynamics.

In the context of surface science GWP methods are relatively

new; the existing calculations show that they are reasonably
35-39accurate. In diffraction problems they can be applied at

kinetic energies at which coupled channel calculations are

prohibitive. They can be easily used to calculate scattering by
37disordered surfaces, a problem for which the traditional quantum

methods would have extreme difficulties.

- ~ ~ ~ - . * .•. -. .- •... ... .. -.. ... °.--. ...... .. . . . .o....... °. .........
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The single most important drawback of the GWP method is that

S..

it is an "ill-defined" approximation, in the sense that it lacks a

precise validity condition, or a convergence scheme which insures

the achievement of greater accuracy with increased labor. This

cannot be done by increasing the number of packets; in fact it

sometimes happens that an increase in the number of Gaussians
67 ,69,. leads to overcompleteness and worsens the accuracy.

Practical experience indicates that one should expect good results

with little effort for short time dynamical problems involving

spatially localized quantum degrees of freedom, which are nearly

semi-classical. Recent work by Sawada, Heather, Jackson and
67

Metiu shows that for some problems accurate long time results

can also be obtained at the expense of the simplicity of the

propagation scheme.

J' I
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II. THE MULTIPLE GAUSSIANS THEORY OF H SCATTERING

11.1. The Hamiltonian

We use the Hamiltonian

(2 2V 2 + (2~I2 -1 t2+ V (.),

*where is the center of mass position, 'r and r2 are the

coordinates of the two atoms forming the diatomic, M=2M and p.=M/2

* are the total and the reduced mass of the diatomic, and is the

angular momentum operator. The coordinate system is shown in Fig.

* 1. The interaction energy with the surface is

2
V(r1,r)- Z Di(exp-2oci(z Z )J-2exp[-ci(zi-Z M1

(11/2)

*1 0 1 cs2Y/c2)1,

where c1 and c2 aeteltiecnats and ?

-This represents the interaction with a corrugated surface and the

*forces acting on the molecule depend on both the polar and the

azymuthal angle describing the orientation of the molecular axis

(Fig. 1). To obtain the equations of motion for the nuclear wave

*functions Galwe insert the wave function (1.2) in the time

*dependent Schrodinger equation, use

(2p±irI 2) 1 L 2 Y (e,4) =e Y (e,40) ,(11.3)

multiply with Y (e,*) sineded~o, and integrate over angles. This

* leads to

a 2 2
* (i? h /2M)V ]Z G 1 (A;t)= V~ (rA)exp-i(e -C )t/?h)(ZG.)

with
IT 2 i1

*V ji(A) =tsinede I d,0 Y (eO)V(r 1 r 2 )Y i(e.O) . (11.5)
ii 0 ~ 0
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11.2 The Equations of Motion

II.2.A. General Remarks

To use the GWP method for solving the equations (11.4) we 5
assume that G are wave packet of the form

G i('A;t) =exp[ (i/h) ( - i(t)). (t).(- t)) M..
cci alCci 0(i

+ i()+(11.6)L
+ ci(t).( _4 &i) + Vci(t)) .(I6

Here 9C (t) and " i(t) are the expectation values of the position

and momentum operators in the state Gai, A i(t) is a 3x3 complex
matrix which gives the width of the packet and a space dependent

phase and y= (t) is a complex function of time contributing to the

phase and the amplitude of the state Gci.

The central idea in Heller's work is that the time evolution A-'-

of the state Gci is given by the evolution of the parameters

A i (t), ai (t), a (t), and y ai(t) . In the simplest

implementation of this idea (which we call the simplest Heller
method (SHM)) it is assumed that: (1) the Gaussians are narrow
throughout the collision so that we can expand tha potential in

the Schrodinger equation (II.4) in power series around the

instantaneous position (t) of the packet and retain the
quadradic part only (the local harmonic approximation (LHA)); and
that (2) each Gaussian can be propagated independently (the

independent Gaussian approximatidn (IGA)). The shortcomings of
6 7- 6 9

SHM were pointed out in our work as well as the work of Skodje and
65 6Truhlar and Thirumalai, Bruskin and Berne.66  Ways of improving

SHM, by removing the two approximations presented above were
67proposed by Sawada, Heather, Jackson and Metiu and by

Heller.5 2 ,5 3  67
In this paper we use the minimum error method (MEM) which

couples the Gaussians and makes no assumption concerning their
width. The only approximation is that G .(A;t) maintain their

Gaussian form throughout the collision.

Our numerical experience with the coupled Gaussian MEM

Id.
• ..-. .. . . .. .. .. . . ..-.. . . .. -.. < . .. •. , . -. . .;-- - -, - -.- -i - --2'; -.
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theory indicates that the coupling terms vary on a faster time

scale than the other terms appearing in the MEM equations. The

presence of these terms slows down considerably the integration

program and therefore it is desirable to neglect them whenever the

penalty is not too severe. In the diffraction calculations carried
36.37 ""-

out by Drohlshagen and Heller (for atoms) and by Jackson and ijj

Metiu (for atoms38 ,3 9 and diatomics 3 5 ) it was demonstrated that

satisfactory results can be obtained if the Gaussians used to

construct the Incident plane wave are propagated independently.

In the present context this suggests that we can assume that G

G etc are decoupled when ax. We cannot however neglect the

coupling between the packets G i =1 , n. since this coupling

is the driving force for the rotational excitation of the

particle.

II.2.B. The Equations of Motion

To generate the MEM equations of motion for the Gaussian -

parameters we define6 7 the error made by using the Equation (1.2)
- •

as:

-A ni -i e I 770

Gi 'A;t)I dA

Since the error made at time t is a function of A 0 (t), R (X lt),

P (t) and yal(t) we determine these quantities so as to minimize

the error. This generates first order, non-linear, ordinary
67differential equations for A (t), -A (t) , " (t) and

Ti(t):

R" M (t)+(* M2 _im t (II.7a)lt = j ij (T aa

(t, = -( )1.Re(,+2Re (t)[R (t) - .(t)

(II. 7b)

. .. .. . ... . . .._ .. . . . , -
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*• " 2 -
A (t) (t) A (t) +

a.-and

F ,F-.o
+~ )[ j(t) M t](io)j (oo "¢
cci Cci M CCi (100 ccJ (000) ccj

(II.7d)
(n)= Z SAd4(- jZt G* (i;t) G C(A;t) V e- i- i j/ ..'"

cci "cc(-

(11.8)
and

:"~~~~~ -(_2) (-A;" t~ t) 2 (.9

Note that F is a scalar, F is a vector with the componentscci cc

(F1') a d(-X (t G GiV epci Ix =  dlX t i iexpli(ej-ei)t/h)'etc.( F e : T A X r ( ) t e

and F2 is a dyadic with the components

(F 2 ) xy - Ed(X-Xj(t))(Y-Y j(t))

G G Vjiexp(-i(ej-ei)t/h), etc..

The complex matrix S and the vectors and are
The comle mar rs an

defined in the Appendix, where we also give an outline of the

derivation of the equations presented above.

*. * * ." . .

. ~ 'o-



11.3 The Choice of Initial Condition

In order to solve the equations (11.7) we must choose

initial values for the parameters A (O), ( (0), (0) , l (0).

As discussed often in literature the GWP method does not provide

an unique and fully justifiable method for specifying these

values. However in the particular case of atom or diatom

diffraction, prescriptions that work well have been proposed and

we see no reason to modify them. 35 - 39 Thus if the initial

rotational state Is Y we take G =0 for ji and define the

parameters of G such that §G i( ;0) is a plane wave whenA takes

values within the unit cell of the solid surface. The way to do

this was discussed in several papers.
35 -39

While this provides initial conditions for the equations ",

propagating the parameters in G i, it says nothing about the

initial conditions for G, jXi. There is a physical reason for

this: the initial state Z G is prepared by the experimentalist,

while Z G is generated by the collidion process. The available

GWP procedures have no provisions for the birth of new packets.

To circumvent this difficulty we propose the procedure described

below.

We consider the case in which the incident molecules are in

state Yk and the incident state of the center of mass is

constructed with the packets G k , .... M. Let us denote by

to the last time when we-can still assume that the packets G l,

lsk have zero amplitude. At that time the packets satisfy the

equations
- ~ a 2 V2 (; Vk() -

(ih r + (h /2M) G(At) = (A)G (R;t) (II.1Oa)

and

t- +(2 22M)V)G l(A;t) = Vlkli)expt-i(ek-eI)t/h}G k(k Vt)

lsk, 1=1,2,...,.m (II.10b)

According to these equations a new packet G (9;t) is generated
al '

K.2.;-7



12 jj
when the initial packet G k(R;t) starts overlapping with V (7.

ak 1k
To create the new packet G 0(;t oT) we solve Eq(II.1Ob) for

a short time T. This gives

G~l (A;to+T) -(iTl'i)(M/ii2"r') 3 / 2

exp((i/h) [(M/2T)(A-1')2 V2 (1, (91 ;t

exp(-(i/h)(ek-el)to} . ( I.1 )

A rather tedious calculation shows that for the surface-

molecule potential (11.2) the quantity Vlk(R'), defined by Eq.

(11.5), is a Gaussian. Therefore the integrand in Eq. (II.11) is

a product of Gaussians and therefore the integration gives a

Gaussian for G1 . If Vlk(') has a complicated non-Gaussian form

the integral can be very accurately performed (since T is

arbitrarily small) by using the stationary phase approximation and

this also gives a Gaussian result.

It should be noted that the above procedure is nothing else

but perturbation theory with respect to TV lk followed by an

asymptotic evaluation of an integral by using the fact that the
1/2inverse length (M/2h) is very large compared to all other

length scales in the problem (i.e. the width of Gk and the length

scale over which Vk( ) changes). Because we control the
1k

magnitude of T this procedure is essentially exact.
so

Our numerical experience with charge transfer problems shows
that it is possible to generate all packets at once, even if for

some of them the term %k G k is very small due to poor overlap.
The outcome is that the new packet G has a much smaller initialam
amplitude than the other new packets, as it should. Subsequent

propagation will increase that amplitude as V miG i increases.

A serious danger in using such a method is that the results
may depend on the moment t chosen for new packet generation.

There is some numerical experience regarding this possibility,

- . . - .- - ,-

.4.4-..-.....
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which indicates that the results are remarkably stable with

respect to this choice.8 0

11.4 A Simplified Model and A Qualitative Discussion of the

Theory

The notation used so far gives a compact representation of

the equations of motion (11.7) for the Gaussian parameters, but

obscures to some extent their physical meaning. In this Section

we discuss a limiting case which is designed to simplify the

computational scheme and bring out its physical content. The

approximations made are sufficiently reasonable to give us hope

that the simplified scheme might also be accurate enough to be

computationally useful.

As Heller pointed out, in the simplest version of his method

(SHM) t(t) and P(t)) follow classical equations of motion and the

phase Rej(t) is essentlally the classical action. These results

are obtained only If the Gaussians are narrow (LHA) and decoupled

(IGA).
67

The MEM version of the theory does not make these

simplifying assumptions and as a result loses the simple features

mentioned above. Nevertheless, it is still useful to think of the

equation of motion for and as evolving according to a

mechanics which is similar to, but more complicated than the

classical one; for lack of a better term we call this a

corpuscular mechanics (we have also used in our work the term -

pseudo-classical). When the MEM theory uses only one packet G

the force acting on the center of the packet is not -3V (R )/3RI al ai...-

(as in the simple Heller method) but -f/9 $ Gi ViG id" Since
th quntt IG 2~ 49

the quantity IG il appearing in this integral depends on ImA(t),
the above force depends on time and the motion of the center of

the packet is not conservative. Various interesting features of

this potential and the resulting "corpuscular mechanics" were

discussed and exemplified by Heather and Metiu. 68 The use of

several coupled Gaussians further complicates the picture since

the motion of their centers is now coupled through terms that have

no classical analog and which are turned on by the overlap between

" .°.~ * ~ . .. ~ > . .* * *.-** . . . . . . .



14

the packets (i.e. they depend on the quantity f dR(R-R.)
"~ G ~V j(R)).•

In what follows we analyze the meaning of the MEM equations

(11.7) by making some of the approximations used by the SHM.

First we emphasize again that while in previous applications of

MEM we coupled the Gaussians in order to increase the accuracy of

*: the calculations, in the present work the coupling between the ',-

Gaussians G a, i=1,...,n with the same a is essential on physical p
grounds. It is this coupling that allows the amplitudes of

- various Gaussians.to vary and give us the final rotational

: distribution. The probability that a particle is in the

rotational state Y is proportional to TdR j G* G which depends

" on Imy i(t) and det(ImA (t)). ThusAcompute this probability

correctly it is essential that the coupling between the Gaussians

G i=1, ..... n is present in the equation of motion for y (t) 

and A i (t); however, we might expect that the coupling may be

- neglected,,without causing a dramatic qualitative deterioration of

the results, in the equations of motion for Ai and (I,

If we begin with the Equation (II.7a) for we find that

the coupling between packets enters through Im . This quantity

* can be written as (see Eq. (11.9)).

o.MP= Z IT(11.12),..z i J--

with i(12

* (=$d ( - (t))G *(R;t)V (!)G .( ;t)exp(-i(e.-e.)t/h )ij cxj (i ji ai t) 2
(11.13)

The diagonal term (t) is real and therefore does not contribute

to Im We are thus left with the off-diagonal terms 1 ij,,-'.j i j ''...
only. These represent the effect of the coupling of G to the - .

other Gaussians Gl, ixj. Since we argued that in the equation

for 9 j this coupling is rot physically essential we neglect it,

- and therefore can take 0.

S ..':

* -- 'p -- - * .-* . ..- . p
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This assumption is also reasonable in view of our past

experience with coupled Gaussian calculations. We have found that

the time evolution of the terms GiG Oj is much more rapid than

that of 1 112 or IA j I2 because of rapid changes In the

difference between the phases of G and G Thus the terms

lj~l, oscillate very rapidly and their effect on the evolution

of may average to zero when the equation of motion fort is

Integrated; furthermore the phase exp(i(eI-e j)t/ } can play the

same role. Moreover is non-zero only when G , V and G

overlap which means that 7 is practically zero at least at someij
times during collision.

If these arguments are accepted we can replace (II.7a) with .

/M (11. 14)

which implies that the center of each packet G moves like a

classical particle with momentum P a.

A similar discussion can be made to simplify Eq.(II.7b)

(giving the evolution of ) by neglecting i when idj. The use

of Eq. (11.14) in (II.7b) removes the last term in the latter

equation. If we further assume that the Gaussian G is narrow

throughout collision we can expand V (6) appearing in the

integrand of 7 (see Eq. (11.13)) and obtain

V (A (t))Sj dA (94 a(t)m(-4 j(t))IG (lR;t).-J a l)":..."

ii aii j J
Z: 2) .3vj (t l (t).".-,'

The last term follows from Eq. (I.9). Using these approximations

and Eq. (11.12) in Eq. (II.7.b) leads to

S(t) = -AV(OA (t)) IaA(t). (II.15a)

. If we don't assume a narrow Gaussian we have

V.• "'
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-(2) A A- R)- AI )1= :F

(II.15b)

Thus the use of the independent Gaussians approximation (IGA) in

(II.7a) and (II.7b) leads to (11.14) and (II.15b); the additional

assumption that the potential energy is locally harmonic (LHA)

simplifies (II.15b) and gives (II.15a). If both LHA and IGA are

used each packet center moves classically on the potential

Vii (t)), which is the expectation value of the molecule
surface potential energy when the molecule is in the rotational

state Y . If LHA is abandoned the motion resembles superficially

the classical one. However the force -[MK] .? is time

dependent and the motion of the packet is non-conservative. As

shown by Heather and Metiu68 '6 9 this is a necessary feature which

ensures the conservation of energy; if LHA and IGA are used the

"classical energy" p2 /2M + V(A t)) is conserved, but the

quantum one isn't.

We emphasize that the use of IGA to decouple the motion of

the centers of the packets is not likely to lead to qualitative

errors for short collision times, and simplifies considerably the

propagation scheme through the elimination of the rapidly varying

coupling terms. There is, as yet, no proof that the errors made

by using these simplified equations are small and the usefulness

of these equations remains to be tested. In support of this

simplified theory we note that it is superior to all classical

trajectory methods which use one trajectory only since it has, as

is conceptually required, one trajectory for each rotational

state. On conceptual grounds the theory also compares favorably

with the well known Preston-Tully (PT) method, while being less

demanding numerically. Like PT we have multiple trajectories, one

for each rotationally averaged energy surface. Unlike PT the GWP

procedure - even in its simplest form discussed in this Section-

describes the center of mass motion by using a nuclear wave
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function. The trajectories are only a simplifying device for

propagating these wave functions. As a result the present theory

uses probability amplitudes while PT attaches to each state a

probability, ignoring the superposition principle and losing V
interference effect. Thus, the present theory describes

interference dominated phenomena - such as diffraction - rather

well while PT cannot describe them at all. Furthermore the use of

GWP's (with (II.15b)) maintains Heisenberg principle in the theory

and this should improve the dynamics, especially if zero point

motion is important. Finally we compute observables describing

center of mass motion by using the rules of quantum mechanics

(i.e. wave functions, operators, matrix elements, etc.) while the

PT method is confined to classical rules. Thus, for example, all

effects of quantum fluctuations (e.g. the fact that <GIP 2G
- 2<GIPIG> ) are lost in the PT method. Nevertheless while

conceptual improvements are pleasing, a direct numerical

comparison between MGWP and PT is required to test whether such

improvements have any practically useful consequences.

r_



III. DISCUSSION

III.1 Remarks regarding the errors made by MGWP

The errors in MGWP are made because (1) we propagate the .

packets originating from different grid points independently and

(2) we force them to maintain their Gaussian form throughout the

collision.

The statement that it is erroneous to propagate Z = G by

propagating each Ga independently seems to be at odds with the

linearity of Schrodinger equation. Indeed if we apply to *(0) =Z

G (0) the exact propagator U(t) to calculate

*(t) = U(t)#(O) -.Z U(t)G, (II1.1)
oro

it automatically follows that

<#(t)IAI#(t)> E E <G (O)IU(t) AU(t)IG (O)> (111.2)

for any operator A. If we take A-I and if U(t) =

U(t) - 1 the propagation scheme will conserve the norm; if A=H and

U(t)H-HU(t) the conservation of energy follows. These conclusions

hold even if U(t) is approximate, as long as it is unitary and

commutes with the Hamiltonian.

However the application of the GWP method with independent

Gaussians to several (but not all) examples67 shows that the above

conservation does not hold; moreover, if the Gaussians are

coupled, the conservation properties are restored.

This discrepancy between the conclusions of the familiar

analysis presented above and the numerical calculation is due to

the peculair nature of the GWP propagation method which calculates
U(t)G (0) by separately optimizing U(t) for each packet G Thus -

the result of such a calculation is more properly denoted

U= (t)G . As long as it is applied to G the GWP propagator is

unitary (i.e. conserves the norm <G (O)IG (O)>) and commutes with

the Hamiltonian (i.e. <G (O)IHIG (0)> is conserved). There Is

.r il
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however no assurance that U (t)+U (t)G - G nor that U HG = r
HUG. Because of this, the quantity

<#(t}IAl*(t}> X E Z <G (O)JU a(t) OU (t)IG (0)> (111.3)

Is not conserved for A-i or for A=H. The MEM procedure does not

have this shortcoming since it seeks an optimum propagator for the

whole sum Z G rather than for each G independently, anda i
therefore (111.2) and its consequences are valid.

The use of the IGA in developing the MGWP procedure is based

on its success in-previous diffraction calculations. We have no

detailed understanding of the reasons for this success, other than .-

the qualitative argument that the IGA-GWP approximation gives each

packet a phase that is very similar to that given by the semi-
81classical theory, which is known to work well for

dffraction. 82 8 5  Nevertheless It is of interest to discuss a

computational method which removes the IGA approximation as well L
as the restriction that the packets maintain their Gaussian form

during collision. This is based on ideas advanced by Fleck,
86Morris, and Feit (FMF) (summarized in Section 111.2) applied to

the MGWP theory of H2 scattering (Section 111.3).

i .

. . * .~~~~ . . . . . .. ..-..-
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111.2 A brief description of FMF method

The starting point of the FMF method is similar to that used

in path integral theory. The long time propagator U(T) is written

as

W(T) U(T )n  (III4)

with nT=T. The short time propagator U(T) has the "split" form

U(Tl=exp((i2T/4M)V )}exp-iTV(A)}exp((Th2 /4M)V } (11115)

It is easy to see that U(T) can also be written as

UlT)-exp(lirh214M)Vg}expl-iTVlA)IWlT n-expliT /4M)V 1),

(111.5)

where

W(T) a exp{(I?2 /2M)V } exp(-i V(A)} (111.6) L

is the more familiar expression for the short time propagator

appearing in the discrete form of the path integral formula for

U(T). The error made by using (111.5) is of order T3 , for each

time step T, while the discrete path integral formula U(T) =

W(T)n makes an error of order T at each time step.

To explain the FMF algorithm we examine the computation of

the elementary step W(rf)((t)>. Using (111.6) and straightforward

manipulations based on the representation theory we can write

41 l0(t+T)> a <A'lWl(llwt)>=

= < AIKv>exp-(iT2 V12M) }< kvit>exp(-iTV(A )}

< I (t)> (111.7) "--

Here we have discretized the variables and and used the rule

that repeated variables are summed over. In the customary path
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integral theory the integral over k is done analitically and

generaes the familiar Gaussian A =

(2niT/M)- 1/ 2 exp{im( -A )2/2hr). We are thus left with only one

integral, over which must be performed numerically. This r
T1

amounts to a multiplication by the diagonal matrix B =6 exp{-
itV(9 )), followed by multiplication with the matrix A . If a

proper discrete representation of the function exp(-iV(i)}<

requires a grid having Nd points (d is the dimension of the vector
2d dthe calculation outlined above requires N + N operations per

* time step. This kind of calculation has been performed by

Thirumala 1i an Berne who used it to evaluate the path integral

formula for the partition function, which is the imaginary time

verison of our problem.8 8

The FMF method does perform both integrals in (111.7) (i.e.

the sums over J; and M numerically. At first this seems to be avth
rather bad idea since it should be more expensive to double the

number of integrals. However this is not the case. Since <k I >'
-3/2v

*:._ = (27) exp{-Ii~ ' } both integrals in (111.7) are Fourier
1 T

. transforms and the use of a fast Fourier transform (FFT) algorithm
drequires only (N ln N) operations for each integral. Thus, this

- leads to a much faster algorithm than the evaluation of the path

. integral by the matrix multiplication procedure. The additional

efficiency comes from both the use of the split propagator formula,

(111.5) which reduces the number of time steps, and the use of FFT .

which reduces the number of operations per time step. The method

* can be applied equally well for real time or imaginary time
89*problems. We emphasize however that the rapid growth of labor

with dimensionality confines this method to a small number (S4) of

quantum degrees of freedom; for imaginary time calculations on "-..'-°,

systems with higher dimensionality Monte Carlo methods should be

*" vastly superior; for real time problems the Monte Carlo procedure

still has severe difficulties which take it out of contention.

The relalionship between FMF and the coupled channel method

* (CC) depends on the problem considered and should be examined with

- some care, since a kind of complementarity exists between them.

.
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For strongly quantum degrees of freedom (i.e. those whose
excitation energy is of the order of the collision energy) the CC

method is very efficient since it requires a small basis set. For

weakly quantum variables, however, CC is very inefficient. The

FMF on the other hand is less sensitive to the number of open

states for each degree of freedom, and depends mostly on the

extent of th yF localization. Localized states interacting

through localized potentials requires small grids for discretizing

exp(-iTV(1)}< H,>; in such cases N is small and FMF is very

efficient. At this'point it should be apparent why the use of

Gaussian wave packets to describe translational motion would

combine very well with a FMF propagation scheme: (a) the initial

Gaussian packet is spatially localized and this makes FMF

efficient; (b) for reasonably brief collisions the packet may

evolve into a non-Gaussian wave function but it is likely to stay

spatially localized; (c) the use of A GWP initial state is not a

limitation since the analysis of the resulting asymptotic state

easily yields the S matrix between many incoming and outgoing

plane waves; (d) if an incident wave function *(x) is spatially

extended we can break it up in a sum of pieces (i.e. we can write

*(x;0) - X (x;O) where *a can be GWP's, for example) each having
a smaller support and thus requiring a smaller grid. Since FMF is

exact each piece can be propagated independently and the scattered

wave function can be exactly rebuilt as the coherent sum of the .

scattered pieces. In principle this procedure is ideally suited

for parallel computing.

For internal degrees of freedom-which are localized by

definition-the FMF is almost always convenient. Our calculations

of the evolution of the Morse ground state driven by a laser show90
it to be extremely efficient..

Another great advantage of the FMF method is that it only

requires the values of the potential at grid points. We do not

need to compute matrix elements between the potential and a basis

set as in CC, and the complexities associated with chosing

potential forms and basis sets which are compatible (i.e. lead to

'a
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F-,-

integrals that are easy to compute) does not appear. This is

particularly important when the quantum system interacts with a

classical many body system and the potential is generated

numerically by a Monte Carlo or molecular dynamics procedure.

III. The application of FMF to the MGWP theory of H2 Scattering

As in the case of the GWP approach to this problem it is

convenient to use the hybrid coupled channel - GWP approach

embodied in the wave function (1.2). Since FMF is exact the
decoupling of G ai, G~j for a ;9 p is no longer an approximation;--:2

furthermore the wave functions G start by being Gaussians but

are allowed to take any form imposed by the dynamics. Thus all
*the approximations made by MGWP are removed.

Since we use the wave function (1.2) we must solve the wave ,7;

equation (11.5). For each a the wave function is an m-dimensional

vector O( ;t) (G (A;t), ... , G( lt). where G 1 is Gaussian

at time t=O only. The potential energy V i(j) is a mxm matrix.

To compute the quantity

exp(irV(g)) • *(- ;t) (111.8)

required in (111.7) we must diagonalize the matrix V(A ) for every
grid point . This must be done only once at the beginning of

the iteration scheme. If we denote by() the diagonal matrix
having the elements A(9 )ij = exp{-TrXi(A,))6j, where Xi(-A,) is

an eigenvalue of V( ), then we can write EI.
T1

T- = exp(-i 4'7*(it) ='1(6 ) (9 ) -(A)- (111.9)

Applying the matrix B to * gives IF -

f (i9) = Bili),.ii) ('rzz.1o) v.
i ij cxj

Equation (111.7) requires us to Fourier transform each fi( )

separately. When this is done we obtain
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FI > f l
F(k = viT

1

The multiplication of * with A requires m steps per grid point

and Ndm2 steps for the whole grid. The FFT leading to (III.11)
drequires (N In N) m operations.

To complete the time propagation, for one time step, we must

perform

" <R'jkv > exp(-iT2? /2M) F Ipk) (111.12)
k

and this requires (N In N)dm operati6ns. The total is N dm2 + 2M

d(NInN) per time step. Of course we must multiply this with the

number of time steps n and the number p of packets G required to

construct the original wave function; the total number of

operations is Pn(Ndm 2 +2m(NlnN) d ); this formula indicates that this.

calculation is feasible on a fast computer.

It is interesting to note the possibility that a calculation

in which we take too few time steps and 0 too coarse a spatial
grid might have some value since these approximations cut off the

fast excitations (i.e. those transitions having high frequencies)

and the high momentum components of the wave function. It is

conceivable that this happens without strong distorsion of the

lower and mid frequency and momentum part of the wave function.
Our experimentations with simple models9 0 confirms this

assumption, but of course it does not imply that this must a

general property.

We note that it might appear that a scattering calculation

require a large grid since the FFT subroutine is such that the .

wave function is reflected by the grid boundary. Thus it appears
that we must place the grid edge very far from the scattering

center, to permit the wave function to escape completely from the

interaction region without reaching the border of the grid. One

can avoid this by removing pieces of the wave function as soon as

.< . .... .- .....-... -. . . . . . . ... . . . . .. - . ... % .- -.... . .. ........ *.*.*. . , • ..*
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they emerge from the interaction region and before they reach the W
90grid. Then the total scattered wave function can be

reconstructed from these pieces with very little ef fort. 90
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FIGURE CAPTIONS

Fig. 1. The coordinate system used in this paper XYZO is

fixed, with the XOY plane on the surface and the OZ

axes pointing towards the vacuum, and describes the ..-

position of the center of mass of the diatomic AB.

The axis of the system XYZ are parallel to those of

XYZ, and the center of the coordinate system is A

moving with the center of mass of the molecule. e

and * describe the onculation of the molecule with
respect to the surface. The interatomic distance is

frozen.

.. ..
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* APPENDIX

To derive equations of motion for the parameters A~i

the expression for the error E given in the text above the

Equation (II.7a). We Introduce in the formula for E the Eq.

(11.6) for Gi and take the time derivatives indicated In E. ThisV.
aci OLO .

leads to a bilinear expression in A i ~ i and Yand

Minimizing E with respect to the above variables (i.e. A,

etc.) leads to

(t) G (-A;t)V()ie jt/ ] = 0

write astw (A~- I

(p -i

where ~~ A ,,ad2 h eutngtreeutoscnb

(A.1)

IG~ (~tj1 (00 t) + F 0

* (A.2)

C~j 2.- a) M (xi(t))
(A.3)

(14 H IG~ (,A;t) 21+ -R-(2 )B Mt + F (2)= 0.aj j Cj (XJ

-A



2

where U... v;,

B M - r( (t)) + (t)*jcc i ccJ

2M cci cci aj c

(I ) dA(X-X _t)f~.y Mt)1 (Z-Z (t) )mIG (-A;t) 12

r~m (A.4)

and

Oej OCc Oei

The equations (A.1-3) represent 13 complex equations, although
to)(A.3) Is symmetric. F is a sum of matrix elements coupling the

* ~state j to other rotational states. an F aretefis n
*second moments of these elements. M is a 3x3 real matrix of all

Oti
* 2nd order moments (I20 cj (I ~ .)of G (vAt). The real

and imaginary parts of equation (A.2) yield equations (11.7a) and

(II.7b) for P (t) and R (t) respectively.

V. The equations for the elements of A .(t) are not so easilyL ccj
L separable. We can combine (A.1) with (A.3) however to write

'000 ccj
(A.4)

(- (t)). 4
WD (t) (-~ (t)4 + )7~ 2).=occJ (Xi Oej ccj cj ccj 0 0 Ccj

where

Ccj Od i Cci



IR TM

3

4-Jo

This can not be reduced to a simple matrix equation for D .(t).

* However, the matrix of equations (A.4) is symmetric, and three of >

*the equations are redundant. Thus, we solve for X aj a vector

containing the six non-redundant elements;

2(D Mt) .2(D (t))cxj xz' oj yz-

*Upon integration, and a bit of matrix alegbra, equation (A.4) can

* be written as

where

(F (2-
aj xx

((2))
(FCj )yy

(2)) Oj(2
c -x (ccj )ZZ ajoo

((2))
aj KY

((2))
Oej xz

aj yz

is a vector of all second order moments of G('A;t); F7

aj r



4

1020) Cj

=j 
1 002 ccj

(110 Occj

and 1 1cj

1 =4 - ( ) - e

where 11)Is a real symmetric 6x6 matrix of all fourth order
cci

moments; (we drop the subscript ccj).

- 400 1220 1202 I310 301 1211

220 1040. 1022 130 121 1031

202 022 004 112 103 013

310 130 112 220 211 121

1301 121 1103 1211 1202 112

211 031 013 121 112 022

Thus

ccicc cc

and we arrive at matrix equation (II.7c), where



5

-(4)

• = -

Finally, using the fact that

JId-AIG :(A;t) 12(*A--A (t))'-'D (t)"O -( : ( t ) )  = V()=: X-," 5i!!:

aj Cj (i Cj Cj aj'

we can write equation (A.1) as equation (II.7d) for (t). -.

As mentioned in the text, the ability to compute these three

dimensional moment and potential integrals analytically is a

tremendous advantage of using the Gaussian basis. The moments are

straightforward to compute and can be derived from
2

(I-- (Jd e (  Im( (t))"

2 Im(Y Mt 3 3

=.[ e1"-e F=

*with respect to the elements of A aj(t). For example

(I 200) (Xj = - 2' 1 000
~~~ 2 (A** (t)))00

ai xx

*Im(A M(t Im(A (t)M z- (Im(A .(t)M)z
4 000 det(Im('.- (t)))

All odd order moments are zero.

The potential integrals in F ajcan all be written as sums of

terms of the form

cJ'

where c Is some collection of constants, and the wave packet and

potential parameters are contained in A and pFor n 0, we can

-Io0. ..0 *..J.. .. ,. .v.-- - . . "-



complete the square to find

e -4det e

As for the moment$ of this (n - 1,2) we can simply take

derivatives of the above with respect to the elements of A and

as was done with ( 0)j

116'
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